2進全加算器を使う

電気電子実験

研究室にSN74LS283Nが転がっていました。Texas Instrumentsのサイトによると「4-Bit Binary Full Adders With Fast Carry」とのこと。電気電子実験で学ぶ全加算をICで実現しましょう。

まず,データシートを眺めましょう。

きっと,みんな嫌がると思いますが,真理値表を解読していきましょう。

A1やB1やΣ1やC2などいろんな変数があって,もう見るのが嫌になってきました。

でも我慢!まず,各変数の意味を確認しましょう。

変数Aは4ビットの2進数を表しています。すなわち,
  A4 A3 A2 A1
です。

変数Bも4ビットの2進数で
  B4 B3 B2 B1
です。

真理値表の/の左上は下位2ビットに対する加算,右下は上位2ビットの加算を示しています。2ビットの加算ですから,和を表すビットも2ビットになっています。また,上位への桁上がりも1ビット存在します。すなわち,
    A2 A1 + B2 B1 = Σ2 + Σ1 桁上がりC2,A4 A3 + B4 B3 = Σ4 + Σ3 桁上がりC4
を表しています。なお,真理値表のC0は今回の4ビット加算を行う前段階の加算の桁上がりになります。C4は今回の4ビット加算の結果生じる桁上がりです。ということで,表を作り変えてみます。まずは下位2ビットの加算から考えます。

この表にするとわかりやすくありませんか?たとえば,上から5行目では,下からの桁上がりがない(C0=0)とき,10+00=10 桁上がり0になることを示しています。下から5行目では,C0=1のとき,01+11=01 桁上がり1になることを示しています。同様に考えると,上位2ビットの加算は,下の表になります。

左に論理回路図を示します。

A1, A2, A3, A4, B1, B2, B3, B4, C0およびΣ1, Σ2, Σ3, Σ4, C4が何を表しているかがわかると思います。また,この図中にはありませんが,C1, C2, C3が何を表すかも推測できると思います。

では,実験回路を作りましょう。

回路図を下に示します。

ただし,出力結果を見るためのLEDは回路図から省略しています。

回路図の下は0010+0110(下からの桁上がり1)の場合の結果です。加算の結果は1001ですね。あ,写真では上への桁上がりの回路を忘れました。後で付け足しました。回路の動作(LEDが時々点滅する)も不安定だったのが安定化しました!

コメント

タイトルとURLをコピーしました